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Abstract: The study primarily examined the determinants of Climate Smart Agriculture technology practices on maize 

production. Data on socio-demographic and farming characteristics were obtained from the Climate Change, Agriculture and 

Food Security Partnership for Up Scaling the project’s targeted communities (Bompari, Dazuuri and Toto) in the Lawra 

municipality of the Upper West Region of Ghana. A total of 300 peasant farmers completed the questionnaire. Results from the 

model building confirmed models 1 and 2 to have strong explanatory power. Notwithstanding that, further evaluation with the 

adoption of Likelihood Ratio and log-likelihood favoured model 1 Furthermore, the post estimation results (Average Marginal 

Effects) from model 1 revealed that farming experience and household head status have no significant impact on predicting 

Climate Smart Agriculture technology practices. The results also confirmed that farmers who have practiced Climate Smart 

Agriculture technology for 6 to 10 years were found to be accompanied by a low probability (15.47%) of using improved 

variety/treated seeds as compared to those farmers who have practiced the technology for a period of 1–5 years. Also, tied 

ridges as Climate Smart Agriculture technology practiced by farmers resulted in a high probability of 11.44% for high yields 

relative to low yields. We recommend the need for further study to investigate the underlying reasons, if any, based on the non-

significant relationship established at the 5% level between the determinants of mineral chemical fertiliser and monoculture 

respectively. 
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1. Introduction 

The agricultural sector is essential in the fight against 

extreme poverty and hunger, supporting the lives of 

approximately 1.5 billion people living in smallholder rural 

households around the world [1]. In many economies, the 

sector is also recognized to be the overarching driver of 

economic growth [2, 3]. 

Despite the crucial role of the sector, agriculture is highly 

prone to climate change and variability, resulting in a global 

decrease in agricultural productivity [4, 5], with small-scale 

farmers suffering disproportionately as a result of poverty, a 

high reliance on natural resources, and a lack of ability to 

adopt new livelihood strategies [6]. In addition, according to 

a study by [7], the industry is plagued by a lack of high-

yielding technologies, droughts caused by climate change, 

floods, and the effects of climate change. 

Climate change and extreme weather events amplify food 
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insecurity issues while also posing new challenges to the 

continent’s long-term development [8, 9]. In addition, due to 

its heavy reliance on rain-fed agriculture and the 

preponderance of large agriculture, Sub-Sahara Africa (SSA) is 

particularly vulnerable to climate change and major weather 

shocks [10, 11]. For example, in the 2015/2016 crop seasons, 

El Niño droughts wreaked havoc on maize yields, resulting in 

significant food security issues in the region [12, 9]. 

In Ghana, just like in any other emerging economy, the 

impact of climate change has resulted in a decrease and 

uncertain production, exacerbating food insecurity and 

poverty. The effects of these climatic shifts will be felt much 

more strongly by peasant farmers, whose farming practices 

are weather-dependent and vulnerable to climate change [5, 

13]. To ensure resilience, adoption of climate smart practices 

among peasant farmers is necessary. 

Despite the importance of climate smart practices in 

strengthening resilience, increasing production, reducing 

greenhouse gas emissions, and mitigating environmental 

degradation, peasant farmers around the world have been 

slow to embrace them [14, 15]. This is due to several defects 

and issues that have yet to be resolved [16]. Most of the 

research has focused on the impact of climate change on 

agriculture and adaptation strategies, but only a few studies 

have investigated the factors that necessitate the adoption of 

adaptation approaches [5, 17]. 

According to the Ghana Statistical Service, the Upper 

West region is one of the lowest among the ten regions of 

Ghana, ranked 10th in poverty, exposing the region to 

susceptibilities including climate change and variability [18]. 

However, over the years, improved technologies, including 

climate smart practices, have been extensively studied among 

peasant farmers in other jurisdictions using Multinomial 

Logistic Regression (MLR) [19, 20], but sequel to that of the 

Lawra municipality of the Upper West region remains not 

investigated among these peasant farmers towards the 

adaptation of these unfavourable climatic conditions. In view 

of this, the study was instituted to examine the determinants 

of Climate Smart Agriculture (CSA) technology practices on 

peasant farmers in the Lawra municipality. 

2. Material and Methods 

Primary data was used in the study with the aid of a 

structured questionnaire to solicit information from peasant 

farmers within the Climate Change, Agriculture and Food 

Security Partnership for Up Scaling (CCAFS P4S) project’s 

targeted communities (Bompari, Dazuuri and Toto) of the 

Lawra municipality. In order to ascertain the determinants of 

CSA technology practices, data on socio-demographic and 

farming characteristics were also collected for this study. The 

variables used in the study were measured on both 

continuous and discrete scales. 

In determining the sample size for the study, [21] criteria 

were used to obtain the initial sample size of 341 peasant 

farmers. However, an equal proportional allocation was 

adopted based on the populations of each community. In view 

of this, a total of 341 peasant farmers was considered as the 

final sample size. Out of the 341 peasant farmers, 300 valid 

responses were retrieved, representing a response rate of 88%. 

2.1. Determination of Sample Size 

The issue of sample size is considered important in any 

study. This is because meaningful generalisations can be 

deduced from the population by determining the appropriate 

sample size which is reflective of the population under study. 

In view of this, considering a confidence level of 95% and a 

5% margin of error, then according to [21], the sample size 

for this study was determined using the minimum sample 

size formula in equation (1) as: 

2
,

1

N
n

N
=

+ ℓ

                                    (1) 

where n  = the required sample size, N = the population size 

and ℓ  = tolerable error (which in this study was fixed at 

0.05). The total population for the three communities is 2,300, 

hence the required sample size can be determined as: 

2
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In order to ascertain the samples to be taken from each 

stratum/community, the proportional allocation of sample 

size is found appropriate as stated in equation (2) as: 

,h
k

N
n n

N
= ×                             (2) 

where hn = sample size of stratum h (that is the sample size 

for each community), N = total size of population, n = total 

sample size and hN = population size of stratum h (population 

size of each community). Table 1 shows the sample 

distributions of the various communities. 

Table 1. Sample Size Distribution of Study Communities. 

Community Total Population Sample Size 

Bompari 800 118.61≈ 119 

Dazuuri 900 133.43 ≈ 133 

Toto 600 88.95 ≈ 89 

Total 2300 341 

2.2. Multinomial Logistic Regression Model (MLR) 

The MLR model is basically premised on the assumption 

that the dependent variable (CSA technology practices) in this 

study has more than two categories (improved variety/treated 

seeds, mineral chemical fertiliser, monoculture, crop rotation 

and tied ridges), where these categories are of no natural 

ordering based on several independent variables (gender, years 

of CSA technology practice, status of yield (high or low) in 

bags, farming experience and status of household head 

(migrant or indigene)). Under MLR, the model can be obtained 

by assuming that the outcomes that are 1, 2,3,...,J n=  being 
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observed in the outcome variable ( )y and predictor variables

( )iX , then the estimated coefficients from the logit model can 

be given as: 

( )
ln , 1,2,3,..., 1.

ii
i i

J

X i J
π ψ φ
π
 

= + = − 
 

           (3) 

The logit model from equation (3) through setting
( )1

0φ = , 

then a measure of changes relative to 
( )1

1φ =  can be 

obtained from the coefficients 
( ) ( ) ( )( )2 3

, ,...,
nφ φ φ . Also, the 

predicted probabilities can be ascertained from the following 

equations: 

( ) ( )( ) ( )( ) ( )( )1 2
1 2

1
1 .

1 exp exp exp
n

n

P y
X X Xφ φ φ

= =
+ + + +⋯

                                                       (4) 

( )
( )( )

( )( ) ( )( ) ( )( )1 2
1 2

exp
.

1 exp exp exp

n
n

n
n

X
P y n

X X X

φ

φ φ φ
= =

+ + + +⋯
                                                (5) 

The relative probability of the categories of CSA technology practices (mineral chemical fertiliser, monoculture, crop 

rotation and tied ridges) that is in this case 2,3,...,y n=  to the reference category of CSA technology practice (improved 

variety/treated seeds) that is, in this case, 1y =  can be derived based on the following equations: 
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Considering that iX  and 
( )n

kφ  to be accompanied with the respective vectors ( )1 2, , , kx x x⋯  and 
( ) ( ) ( )( )1 2, , ,
n n n

kφ φ φ ′
⋯ , a one-

unit change in ix , then the ratio concerning the risk, which is the risk of the outcome to the reference category (improved 

variety/treated seeds) can be obtained from; 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( )1 2 11 2

1 21 2

exp exp exp exp

exp .

exp exp exp exp

n n n n

i i kk n

i
n n n n

i i kk

x x x x

x x x x

φ φ φ φ
φ

φ φ φ φ

++ + + +
=

+ + + +

⋯

⋯

                            (8) 

The study adopted Average Marginal Effects (AME) to obtain the actual magnitude of changes in probabilities instead of the 

estimates of the MLR model which tend to give the direction of the explanatory variables on the outcome variables which 

sometimes becomes difficult to interpret model coefficients. In this study, the AME can be achieved by considering that if 

there exist n  factor levels of variable L ; 

( ) ( ) ( ), , | , | var / .h x f x L n f x L improved iety treated seedsθ θ θ= = − =                                         (9) 

2.3. Assumption of Multinomial Logistic Regression 

The assumption underlying the MLR model depends on 

the Independence of Irrelevant Alternatives (IIA). This 

assumption postulates that the inclusion or exclusion of 

categories of the dependent variable does not in any way 

affect the relative risks associated with the regressors in the 

remaining categories. However, this assumption does not 

hold in all instances [22]. When this assumption is violated, 

the IIA is relaxed by using the Hausman test via the 

Seemingly Unrelated Estimation. This test allows for an 

assessment of equal common coefficients of the dependent 

variable across corresponding models for the null hypothesis. 

According to [23], the steps involved in testing the 

hypothesis of IIA for the Hausman type are: 

1) Estimate the full model with the inclusion of all J

outcomes for which these estimates are found in ˆ
Fullφ  

2) Estimate the constrained (restricted) model of which 

one or more outcomes categories are eliminated and let 

these estimates be found in Re
ˆ

ducedφ . 
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3) Define 
*ˆ
Fullφ as a subset of ˆ

Fullφ  after the elimination of 

coefficients not found to be estimated in the constrained 

(restricted) model. 

Following the above steps, the Hausman test linking the 

IIA is provided as: 

( ) ( ) ( ) ( )1
* * *

Re Re Re
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ .IIA duced Full duced Full duced FullH V Vφ φ φ φ φ φ

−′  = − − −  
                              (10) 

The test is asymptotically distributed as 2χ with degrees 

of freedom found to equal the rows in Re
ˆ

ducedφ if the IIA is 

true. It is well established that failure to reject the null 

hypothesis ( )IIAH  at any significant level is a confirmation 

that the assumption of IIA holds [24] and that the MLR can 

be employed in modelling the CSA technology practices. 

3. Results and Discussion 

The study basically made use of CSPro version 7.5 for the 

data entry while STATA 16.1 was used to analyse the required 

data. The study targeted a total of 341 peasant farmers from 

the three communities in the Lawra municipality. However, 

300 peasant farmers completed the questionnaire, representing 

approximately an 88% response rate. 

Table 2 presents a description of the socio-demographic 

and farming characteristics of respondents in the study. Out 

of the three hundred (300) households interviewed, 185 

(61.7%) were males, while 115 (33.3%) were females. Most 

of the respondents were indigenes, numbering 231 (77.6%), 

while 69(22.4%) migrated from other parts of the region for 

the purpose of farming or settlement. CSA is an important 

part of today’s farming practices. In the modelling, farmers 

used 86(30.39%) improved variety/treated seeds, 72 (25.44%) 

mineral chemical fertilizer, 51 (18.02%) monoculture, 39 

(13.78%) crop rotation and 35 (12.37%) tied ridges. The 

result from Table 2 indicated that most of the household 151 

(53.95%) practiced CSA technology and have gained 

working experience between 1 and 5 years while 106 

(37.86%) practiced CSA technology with working 

experience between 6 and 10 years. Few farmers of about 23 

(8.21%) practiced CSA technology for eleven (11) years and 

more. Table 2 also revealed that the majority (75.78%) of the 

peasant farmers on average had high yields while the 

remaining 24.22% on average had low yields for the five 

farming seasons (2016 to 2020). 

Table 2. Descriptive Statistics of Socio-Demographic and Farming Variables. 

Variables Frequency (%) Variables Frequency (%) 

Gender  CSA Technology Practice  

Female 115 (38.33) Improved variety/treated seed 86 (30.39) 

Male 185 (61.67) Mineral chemical fertiliser 72 (25.44) 

Status of Household Head  Monoculture 51 (18.02) 

Migrant 69 (22.74) Crop Rotation 39 (13.78) 

Indigene 231 (77.26) Tied Ridges 35 (12.73) 

Years of CSA Technology Practice  Status of Yield (in 100kg bags)  

1-5 years 151 (53.93) Low yield 54 (24.22) 

6-10 years 106 (37.86) High yield 169 (75.78) 

11 and above 23 (8.21)   

 

In order to decide on the model to use in making 

predictions on CSA technology practices, the study adopted 

the model building strategies of which all the candidate 

models have one of the categories (improved variety/treated 

seeds) omitted in model 1. This was followed by an omission 

of mineral chemical fertiliser, monoculture, crop rotation and 

tied ridges for models 2 to 5 respectively. From the output in 

Table 3, except for model 1 and model 2, all the other models 

were not significant at the 5% significant level. This means 

that models 1 and 2 have strong explanatory power as 

compared to the other models [23]. However, further 

evaluation of these two models (model 1 and model 2) finds 

a high likelihood ratio 2χ  (36.99) and the least log-

likelihood (-302.0844) to favour model 1 and hence to be 

utilised in assessing the assumption of IIA [23]. 

Table 3. Hausman Specification Test with and without Constraints on CSA Technology Practices. 

 
Constrained Models 

Model 1 Model 2 Model 3 Model 4 Model 5 

N 209 153 171 185 183 

d.f 24 18 18 18 18 

p-value 0.0438* 0.0228* 0.0795 0.0951 0.1565 

LR 
2χ  36.9900** 31.8700 26.9700 26.2100 23.9600 

LL -302.0844** -183.1736 -207.9992 -232.9672 -230.1018 

Footnote: Models 2-5 are the constraint models, N=Number of observations, d.f=degree of freedom, LR=Likelihood Ratio and LL=Log Likelihood, p-

value < 0.05, ** means the least LR and LL. 
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The tradition of any model is that it must satisfy the 

necessary basic assumptions. In this study, the MLR as used 

in modelling the data employed the assumption of IIA. This 

assumption posits that considering any two alternatives, the 

probabilities of its ratios should be independent of other 

alternatives available. Notwithstanding, this assumption does 

not hold in all cases [22]. A classical illustration is present in 

a study by [22] in a transportation model with four possible 

alternatives (riding a train to work, taking a bus to work, 

driving the Ford to work, and driving the Chevrollet). The 

study indicated that “drives Ford to work” is a closer 

replacement to “drives the Chevrolet” as compared to “ride 

the train” (at least for most people). The impulse from the 

view of McFadden can be conveyed to mean that not 

considering or excluding “drives the Ford” from the 

transportation model is expected to affect the relative risks of 

the remaining alternatives, hence deviate from the 

assumption of IIA. Based on this, Seemingly Unrelated 

Estimation is devised in this study to relax the assumption of 

IIA [24]. The test seeks to determine whether the coefficients 

associated with CSA technology practices are the same 

across the various models. 

The results from Table 4 find the coefficients associated 

with each of the dependent variables (Model 2 to Model 5) to 

be the same, with p-values not exceeding the 5% level of 

significance. Also, the simultaneous tests of the coefficients 

of the dependent variables fail to reject the null hypothesis of 

equal coefficients across the various models. This means that 

the assumption of IIA holds under the chosen model (model 

1), which is in line with a study by [24]. 

Table 4. Test of IIA Assumption via Seemingly Unrelated Estimation. 

Model + Intercept d.f ��  p-value 

Mineral Chemical Fertiliser 21 3.48 1.0000 

Monoculture 21 3.29 1.0000 

Crop Rotation 21 5.70 0.9996 

Tied Ridges 21 9.20 0.9875 

Accumulation 42 47.31 0.2647 

Table 5 presents the AME from MLR on the CSA 

technology practiced by peasant farmers in the Lawra 

municipal of the Upper West region. In all, gender, years of 

CSA technology practiced, status of yield, farming 

experience and household head status were used in predicting 

the choice of CSA technology practices by farmers of the 

Lawra municipal. STATA 16.1 was used to estimate the 

parameters of the MLR model. However, these parameter 

estimates were further subjected to post estimation in 

STATA 16.1 to obtain the AME (that is, the average changes 

associated with the choice of CSA technology practices for a 

unit change in a specific independent variable). 

It is worth noting from Table 3 that the LR Chi-square 

statistic of 36.9900 with a degree of freedom of 24 is 

significant (p-value <0.0438) at the 5% level, which signifies 

that the model has strong explanatory power. Also, the 

Pseudo R-squares for McFadden, Cragg & Uhler and 

Maximum Likelihood are around 0.0580, 0.1700 and 0.1620 

indicating that the explanatory variables accounted for 5.8%, 

17% and 16.2% of the variation in CSA technologies 

practiced by farmers respectively [24]. The standards of the 

Pseudo R-squares reveal that there is a weaker relationship 

between the outcome variable (CSA technologies practiced 

by farmers) and the explanatory variables (gender, years of 

CSA technology practice, status of yield, farming experience 

and household head status) in the model. For the 

interpretation of the estimates in connection with the AME, a 

positive value means that the predictor contributes positively 

to the choice of CSA technology practiced by the peasant 

farmer, and a negative value shows that the predictor variable 

contributes negatively to the choice of CSA technology 

practiced by the peasant farmer. 

From Table 3, being a male has a high probability but a 

non-significant effect on the following CSA technology 

practices (that is, improved varieties/treated seeds, 

monoculture and tied ridges) as compared to females in the 

Lawra municipality. This is because men stand the chance of 

attending meetings with institutions that know about the CSA 

technology practices. For instance, the study revealed that 

male farmers have a higher probability of using improved 

variety/treated seeds by 8.49%, monoculture by 2.12% and 

tied ridges by 4.98% respectively relative to female farmers. 

The outcome also confirms the position of [25] that males are 

more likely to adopt CSA technology practices than their 

female counterparts. Also, male farmers have a lower 

probability of 0.06% and 15.53% of using mineral chemical 

fertilizers and crop rotation respectively. However, such a 

decrease in the average marginal effect of gender under crop 

rotation was found to be significant (p-value=0.01). 

The results show that farmers who have practiced CSA 

technology ranging from 6 to 10 years were found to be 

accompanied by a low probability of 15.47% of using 

improved variety/treated seeds as compared to those farmers 

who have practiced CSA technology for 1 to 5 years, but 

such a decrease in probability was significant at the 5% level. 

This means that farmers with 1 to 5 years of experience stand 

a better chance of using improved varieties/treated seeds than 

those with 6 to 10 years of farming experience as well as 

those with 11 or more years of farming experience 

accompanied by a decrease in the probability of 5.28%. Also, 

the results revealed that years of CSA technology practiced 

by peasant farmers for 6 to 10 years had a low probability of 

0.76% for using mineral chemical fertilizer relative to the 

base outcome (1 to 5 years of CSA technology practice). 

However, 6 to 10 years of practicing CSA technology was 

found to have high probabilities of 0.71%, 6.92% and 8.60% 

of using monoculture, crop rotation and tied ridges 

respectively relative to the reference outcome (1 to 5 years of 

CSA technology practice). 

Meanwhile, these probabilities were not significant at the 5% 

level. The result further revealed that peasant farmers who have 

CSA technology practice experience of 11 or more years were 

found to be associated with low probabilities of 5.58%, 6.85% 

and 5.54% for improved varieties/treated seeds, mineral 
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chemical fertiliser and tied ridges respectively as compared to 

that of 1 to 5 years of experience of CSA technology practice. 

Higher probabilities were recorded for CSA technology practice 

of 11 or more years towards the use of monoculture and crop 

rotation by 15.08% and 2.89% respectively as compared to the 

reference level (1 to 5 years of CSA technology practice). 

However, these observed probabilities were not significant at the 

5% level of significance. 

The study further indicated that peasant farmers with high 

yield status were associated with a decrease in probabilities of 

use of improved varieties/treated seeds (5.95%), mineral 

chemical fertiliser (4.94%), and monoculture (11.34%) 

respectively as compared to those with low yield. On the other 

hand, crop rotation and tied ridges recorded an increase in 

probabilities of 0.91% and 11.44 respectively for high yield as 

compared to low yield, meaning that crop rotation stands the 

chance of increasing yield by 0.91% and tied ridges by 11.44% 

as compared to a decrease in yield respectively. However, 

none of these probabilities was observed to be significant at 

the 5% level apart from tied ridges. 

Farming experience refers to the number of years a 

household spends on crop cultivation. From this perspective, 

it can be anticipated that the more years a farmer is involved 

in the practice of farming, the better the experience gathered 

in the activities of farming, all things being equal. The study 

revealed that an additional year of farming experience 

increases the use of improved varieties/treated seeds by 

0.23%, monoculture by 0.34% and tied ridges by 0.07%. This 

outcome is in line with a study by [26, 27] positing higher 

chances of adopting an improved maize variety for those 

with longer years of farming experience than those with 

fewer. Also, a study by [28] is consistent with this current 

study, where a significant positive relationship between the 

length of farming experience and the adoption of farming 

technologies was established. On the other hand, a unit 

increase in farming experience is found to decrease the use of 

mineral chemical fertiliser by 0.39% as well as crop rotation 

by 0.25%. This finding on crop rotation established is in line 

with a study by [29] which found years of farming to be 

negatively associated with crop rotation practice. Also, the 

decreases recorded in mineral chemical fertilizer and crop 

rotation could be subjected to the cost associated with 

fertilizers and the issue of land litigation, which barely makes 

it impossible for the aged who have stayed long in farming to 

practice such technologies. Meanwhile, none of these was 

significant at the 5% level. 

From Table 5, households who are natives or indigenes of 

the study communities recorded low probabilities with 

regards to the use of improved varieties/treated seeds 

(5.91%), mineral chemical fertiliser (0.01%) and 

monoculture (2.09%) as compared to migrants respectively. 

This decrease in such CSA technology practices could be 

attributed to a lack of CSA knowledge in the communities. 

Furthermore, indigenes had a higher probability of using 

CSA technology practices for crop rotation (5.67%) and tied 

ridges (2.33%) when compared to migrants. 

Table 5. Average Marginal Effects from MLR on CSA Technology Practices. 

 
Improved Variety/Treated Seeds Mineral Chemical Fertiliser Mono culture Crop Rotation Tied Ridges 

dy/dx (p-value) dy/dx (p-value) dy/dx (p-value) dy/dx (p-value) dy/dx (p-value) 

Gender      

Female (*)      

Male 0.0849 (0.21) -0.0006 (0.99) 0.0212 (0.71) -0.1553 (0.01*) 0.0498 (0.29) 

Years of CSA Practice  

1-5 years (*)      

6-10 years 0.1547 (0.02*) -0.0076 (0.91) 0.0071 (0.89) 0.0692 (0.17) 0.0860 (0.10) 

11+ years 0.0558 (0.63) -0.0685 (0.51) 0.1508 (0.16) 0.0289 (0.72) -0.0554 (0.25) 

Status of Yield      

Low yield (*)      

High yield -0.0595 (0.45) -0.0494 (0.48) -0.1134 (0.10) 0.0091 (0.84) 0.1144 (0.00*) 

Farming Experience 0.0023 (0.35) -0.0039 (0.13) 0.0034 (0.07) -0.0025 (0.25) 0.0007 (0.67) 

Status of HH      

Migrant (*)      

Indigene 0.0591 (0.49) -0.0001 (0.99) -0.0209 (0.77) 0.0567 (0.22) 0.0233 (0.65) 

Footnote: Number of Observations=209, LR χ� �24� =36.9900, Prob> χ� =0.0438, McFadden's R� = 0.0580, Cragg &Uhler R� =0.1700, Log 

Likelihood=-302.0844, Maximum Likelihood R� =0.1620 and * means p-value < 0.05. 

 

4. Conclusions 

The study adopted the MLR to model the determinants of 

CSA technology practiced by peasant farmers within the 

CCAFS P4S project’s targeted communities (Bompari, 

Dazuuri and Toto) of the Lawra municipality. In modelling 

the determinants of CSA technology practices, model 

building strategies were devised, from which it turned out 

that models 1 and 2 have strong explanatory power. However, 

further evaluation through the LR and log-likelihood tends to 

support model 1 (that is, the model with improved variety 

omitted). Also, model 1 passed the assumptions of the IIA 

and hence was found appropriate to model the determinants 

of CSA technology practices. 

Based on the findings of this study, male peasant farmers 

are less likely to use crop rotation as compared to females. 

Also, on the length of CSA technology practiced by peasant 

farmers, those with a duration of 6 to 10 years and 11 years 

and over are less likely to use improved variety/treated seeds 

relative to those with 1 to 5 years respectively. In addition, 

using tied ridges as a CSA technology practice was more 
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common among farmers of high yield status as compared to 

those of low yield status. In another vein, tied ridges as a 

technology practiced by farmers stands the chance of 

resulting in high yields relative to low yields. 

Moreover, the determinants (farming experience and status 

of household head) in the MLR model do not in any way 

impact significantly on the prediction of the various CSA 

technology practices considering maize production. Besides 

this, none of the determinants utilised under the MLR model 

are associated significantly with both mineral chemical 

fertiliser and monoculture relative to the base (reference) 

outcomes. 
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